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 Abstract  

The phenomenon of position-effect variegation has long been used as evidence for the importance 
of chromosome position to gene expression in eukaryotes. Investigations published within the past 
few years demonstrate that position- effect variegation is caused by multiple mechanisms, and that 
direct tests of hypotheses are possible with numerous model systems.

 Abbreviations  

 —  locus; E(var) Enhancer of variegation
 — origin recognition complex; ORC
 —position-effect variegation; PEV
 —silent information regulator; SIR

 —  locus.Su(var) Suppressor of variegation

 Introduction  

Heitz  recognized that some eukaryotic genomes are divided into two cytologically distinct 
entities, euchromatin and heterochromatin ( ). Euchromatin contains most of the single-copy 
DNA and mutable genes, decondenses during interphase, and replicates throughout S phase. 

[1]
Fig. 1
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Heterochromatin defies simplistic definitions, but in general it contains few mutable genes, is rich in 
middle-repetitive and highly-repetitive sequences (including transposons), is constitutively 
condensed throughout the cell cycle, and replicates late in S phase (reviewed in ). Position-effect 
variegation (PEV) was first characterized by Muller  as the variable, but heritable, inhibition of 
euchromatic gene activity when artificially juxtaposed with heterochromatin by chromosome 
rearrangement ( ). Numerous reviews published in the past few years have summarized the 
interesting history of researchers' accomplishments in this field . We now 
recognize that position effects include a broad array of phenomena, such as heterochromatin-
induced inhibition of transcription and reduction in DNA copy number, telomere-induced position 
effects, interactions between genes on separate chromosomes ('  -sensing effects'), and 
inhibition of heterochromatic genes and chromosome transmission functions ( ). Thus, PEV 
provides a window for investigating the function and metabolism of heterochromatin, as well as 
other aspects of chromosome and nuclear organization. In this review, I will describe key 
developments in the field of PEV that have occurred during the past year, with special emphasis on 
new concepts resulting from molecular-genetic studies using tractable systems such as 
and yeast. I will emphasize the viewpoint that chromatin assembly and transcriptional inactivation 
are not the sole mechanisms for PEV; there is mounting evidence that multiple PEV mechanisms 
exist, including nuclear compartmentalization and physical alterations of DNA.

[2]
[3]

Fig. 1a
[4][5][6][7][8][9•]

trans
Fig. 1b

Drosophila

Chromosome structure and PEV in . The structure of the X chromosome and an Fig. 1. Drosophila (a)
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inversion causing PEV. A chromosome rearrangement juxtaposing euchromatin and heterochromatin causes 
PEV (breakpoints are indicated by open triangles). This rearrangement brings the euchromatin (shown as a 
line), which includes genes such as the ( ) eye-colour gene, close to centric heterochromatin causing 
a ( ) or variegated phenotype. The centric heterochromatin can be separated into 

(gray) and (diagonal bars) heterochromatin (reviewed in ). The heterochromatin contains highly 
repeated satellite DNA, and some middle-repetitive elements, and is severely under- represented in 

dipteran polytene chromosomes. The heterochromatin is the 'buffer' between euchromatin and 
heterochromatin, contains middle-repetitive transposon-like sequences and some single copy genes, and is 

not under- represented in polytene nuclei. Subtelomeric heterochromatin resembles heterochromatin in 
structure and can cause PEV of inserted genes . Eye phenotypes are shown for males with 
different sex chromosome constitutions (XY, XO, XYY). Dark 
areas indicate the normal red pigmentation ( expression) and white areas indicate ommatidia that 
lack activity. Removal of the predominantly heterochromatic Y chromosome (XO males) significantly 
reduces total genomic heterochromatin and enhances the PEV in (more mutant), whereas additional 
heterochromatin (XYY males) suppresses PEV. The structure of chromosome 2 and an inversion causing 
PEV. Normally heterochromatic genes, such as the gene ( ), are moved into centromere–distal 
euchromatin . In this case, the eye pigmentation phenotype responds to the amount of genomic 
heterochromatin in a 'reverse' manner to the heterochromatin-induced PEV in (a).

white w
white mottled w m

[75]

[77•][79]

w +

w +

trans
(b)

light lt
[60]

Return to text reference [1] [2] [3] [4] [5] [6]

 Chromatin assembly and position-effect variegation in Drosophila  

 The chromatin assembly model  

The hypothesis that chromatin compaction and transcr- iptional inactivation are the molecular 
mechanisms responsible for PEV arose from cytological observations on  polytene 
(endoreplicated) chromosomes (reviewed in ). Euchromatin juxtaposed with heterochromatin via 
chromosome rearrangement can display diffuse banding and high compaction normally characteristic 
of the heterochromatic chromocenter. This visible 'heterochromatinization' correlates with inhibition 
of gene function; those regions closest to the junction are most likely to appear compacted and to 
contain inactive genes. Elegant models (reviewed in ) have suggested that multimeric complexes 
of proteins normally present in heterochromatin are responsible for packaging large chromosomal 
domains in a repressed state. In these models, mass-action or self-assembly of the complexes is 
responsible for euchromatic 'spreading' of repressed gene activity, clonal inheritance of inactivation, 
and sensitivity of PEV to the dosage of heterochromatin and unlinked modifiers in the cell .

Drosophila
[4]

[6]

[10]

Although the chromatin assembly model has gained widespread acceptance, direct proof in 
multicellular eukaryotes, such as  , has been lacking (see below). In addition, new 
observations question the generality of previous cytogenetic characterizations of 
heterochromatinization. Directional spreading of chromatin assembly molecules is inconsistent with 
the discontinuous compaction seen upon close inspection of some variegating rearrangements . 
Furthermore, recent studies have shown that two rearrangements present in the same cell can 
behave independently with respect to gene expression, compaction, and the binding of one 
heterochromatin-specific protein , discounting the hypothesis that cell-by-cell variations in 
gene expression are caused by differences in dosage of heterochromatinization proteins that are 
uniformly distributed in the nucleus. Recent findings support a role for other PEV mechanisms, such 
as nuclear positioning and somatic elimination, more consistent with these stochastic behaviors (see 
below).

Drosophila

[11]

[12•][13•]

 Position-effect insulator elements and chromatin structure  
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Does chromatin structure actually change in response to PEV? Unfortunately, it has been difficult to 
analyze chromatin changes associated with PEV at the molecular or biochemical levels. The 
significance of chromatin structure in PEV has been questioned 
by a comprehensive analysis of the  gene in the inversion  . Only minor changes in 
DNase I sensitivity and nucleosome spacing were observed in response to this PEV rearrangement, 
despite extensive cytologically visible changes in polytene chromosome structure .

white In(1)w m4

[14]

Putative chromosome domain boundary elements, such as specialized chromatin structures, can 
insulate chromosomally integrated genes from euchromatin-induced position effects  and block 
enhancer- mediated activation of transcription . Recently, position- effect insulator elements 
have been identified from short DNA sequences associated with the nuclear scaffold , 
constitutive DNase I hypersensitivity , and transcription factor binding . Surprisingly, 
insulator function appears to be highly conserved during evolution. A yeast scaffold attachment 

region element functions as an insulator in plant cells , and a chicken -globin constitutive 
hypersensitive site insulates reporter gene function 
in human erythroid cells and tissues . Further investigations will be required to 
determine whether primary sequence or secondary structure of these elements is recognized by 
other species, and how much of the protein machinery is conserved.

[15]
[16]

[17]
[18••] [19][20•]

[17]

Drosophila [18••]

The identification of position-effect insulator elements suggests that chromatin accessibility can 
influence position effects. However, a role for insulator elements in heterochromatin-induced PEV is 
suggested by only one study , which does not address the importance of chromatin assembly 
directly; for example, insulator elements could act by altering the nuclear compartmentalization of a 
gene through attachment to the nuclear membrane or scaffold. Chromatin changes, if demonstrated 
to occur, could be a secondary consequence of nuclear positioning.

[20•]

 genes that modify position-effect variegation inDrosophila trans  

If the chromatin assembly model is correct, then loci encoding  -acting modifiers of PEV should 
play a role in chromatin assembly, packaging, or maintenance. As many as 120 dominant 
suppressors (  ) or enhancers (  ) 
of variegation exist in (see  for extensive reviews). One of the best 
studied modifier genes is the  gene, which encodes the heterochromatin-binding protein 
HP1 . The conservation of HP1 in evolutionarily distant species (mealybugs , 

, mice  and human ), and the lethality of HP1 null alleles , has suggested 
that HP1-like proteins are important for cell viability and/or development. However, the recessive 
lethal phenotypes of HP1 null animals are consistent with diverse roles for the protein, including 
activation of essential heterochromatic genes , chromosome transmission, or regulation of 
transposable elements .

trans

Su(var) E(var)
Drosophila melanogaster [6][8]

Su(var)205
[21] [22] Drosophila

virilis [23] [24] [25•] [26•]

[27]
[26•]

HP1 shares the 52 amino acid 'chromo domain'  or 'HP1/Pc box'  with the Polycomb protein 
(Pc), which regulates important developmental events by repressing euchromatic homeotic gene 
expression. A link between PEV and homeotic gene repression has been substantiated by the 
exciting demonstration that regulatory regions that respond to Pc group repression can induce 
variegation of an adjacent  gene . The fact that neither HP1 nor Pc proteins themselves 
bind DNA , and the dose-dependent phenotypes associated
with mutations at each locus , have led to the speculation that both proteins are involved in 
the assembly of different multimeric complexes that maintain repressed gene activity during 
development (reviewed in ).

[28] [23]

white [29••]
[30••]

[21][28]

[31•]

Does the chromo domain function to compact chromatin? Molecular dissection of HP1 protein 
functions indicates that nuclear localization and heterochromatin association functions map outside 
the chromo domain, but this study does not directly address 
the function of the chromo domain . Monitoring the binding of mutant Pc proteins to 
euchromatic polytene chromosome sites has elegantly demonstrated that the chromo domain is 
necessary for proper Pc distribution . These results support the hypothesis that the chromo 
domain promotes protein–protein interactions, presumably between Pc, or HP1, and DNA-binding 
proteins that are responsible for localization of the complexes to specific chromosomal sites. As HP1 
and Pc display distinctly different chromosomal distributions, their binding specificity must be 
encoded by minor differences between the chromo domains, or by another part of the amino 
termini. It is still unclear whether these complexes accomplish gene repression by higher-order 
chromatin compaction, nuclear compartmentalization, or other mechanisms (see below) .

[32]

[30••]

[31•]

The involvement of proteins such as HP1 in PEV is likely to tell only part of the story. Only a few of 
the products from the hundreds of modifier loci have been analyzed by molecular cloning, and they 
vary in structure and potential function. 
Cloned genes encoding modifiers include (HP1),  (function unknown, the 
protein contains unusually spaced zinc fingers ),  (a DNA-binding protein ),
and  (the protein phosphatase 1 catalytic subunit ). The identification of recessive 
PEV modifier mutations, whose phenotypes are not dose dependent , opens up the possibility 
that this new class of genes can be identified by direct genetic screening. The biological functions of 
even those genes that have been cloned are still obscure. A number of molecular mechanisms could 
be carried out by proteins associated with DNA, including chromatin compaction, but also nuclear 
localization, replication, nuclease activity, transposition and recombination. Our understanding of the 
diversity of mechanisms acting on heterochromatin will be greatly enhanced by direct 
demonstrations of the biological functions of the proteins. The isolation of readily clonable P-
element induced and  alleles should greatly facilitate this important 
undertaking.

Su(var)205 Su(var)(3)7
[33] modulo [34•]

Su(var)(3)6 [35]
[36]

Su(var) E(var) [37•][38]

 Telomeric and centromeric position effects in yeast  
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The relevance of  PEV models to other organisms has been validated by recent studies in 
yeasts (reviewed in ). In 

, inactive mating-type loci (  and  ) and genes inserted near telomeres display 
heritable, but reversible, repression reminiscent of the PEV phenotypes seen in multicellular 
eukaryotes . As for PEV in  , telomeric silencing in yeast is directional and the extent 
of the silenced region can be modified by altering the dosage of the product of an unlinked locus (

 , a silent information regulator) . However, the yeast position effects include ~ 2–3 
orders of magnitude less DNA, and inactivation of telomeric genes is normally less frequent, than 
heterochromatin-induced PEV in .

Drosophila
[9•][39••][40•] Saccharomyces 

cerevisiae HML HMR

[41] Drosophila

SIR3 [42•]

Drosophila

The most direct biochemical and molecular evidence that PEV involves chromatin structure changes 
comes from detailed studies in  and  . Resistance to 
methyltransferase activity , unusual nucleosome structures , suppression of silencing by 
histone H3 and H4 mutations , and hypoacetylation of histones  at telomeres and  loci 
show that detectable chromatin changes are correlated with the silenced phenotype. 
centromeric regions have been shown recently to induce PEV on inserted genes , and the 
centromere central core is associated with unusual nucleosome spacing .

S. cerevisiae Schizosaccharomyces pombe
[43][44] [45]

[46] [47] HM
S. pombe

[48•]
[48•][49]

The primary cause of chromatin changes and PEV in yeast is still unknown, but progress in this area 
is rapid. The mapping of an origin of replication and a sequence required for silencing to the same 
138 bp  element has forged a link between replication and silencing . The origin 
recognition complex (ORC) binds autonomously replicating sequences and is required for 
origin function. Elegant genetic  and biochemical  analyses have demonstrated 
that the ORC is essential for silencing. ORC binding alone, rather than the initiation of replication, 
appears to be required to recruit proteins encoded by the  s to  loci . It is still unclear 
whether ORC and subsequent SIR binding are required for establishment and/or maintenance of the 
repressed state . However, recent experiments investigating the cell-cycle 
dependence of activation of a telomere-silenced gene have suggested that replication may be 
necessary to reverse silencing (OM Aparicio, DE Gottschling, personal communication). The role of 
the RAP1 protein in PEV and localizing telomeres to the nuclear membrane will be discussed below.

HMR [50•]
in vivo

[51••][52••] [53••]

SIR HM [54•]

[51••][52••][53••]

 Nuclear organization and position-effect variegation  

Interphase nuclei display a characteristic organization (the Rabl orientation ). In general, 
centromeres and telomeres are clustered and are found associated with opposite poles of the nuclear 
envelope , their positioning and clustering being regulated during the cell cycle . A 
number of studies published in the past few years have suggested that the positions of genes within 
the nucleus, not just within the euchromatic or heterochromatic regions of chromosomes, are 
important for normal expression (reviewed in ). This constitutes a major change in our 
perception of the mechanisms responsible for PEV; genetic systems for investigating the functional 
significance of nuclear positioning are emerging rapidly.

[55]

[56] [57•][58•]

[59•]

It is difficult to explain the effects of distant structural changes on some PEV systems, and the 
discontinuous compaction of euchromatin associated with some rearrangements (see  and text 
above), as the result of spreading chromatin compaction or decompaction along the chromosome. 
Tantalizing examples of unusual PEVs in  have suggested that heterochromatic 
compartment(s) exist within the nucleus and are important for normal gene function. The rare genes 
present in  heterochromatin display a 'reverse' position effect, that is, their function is 
inhibited when moved into euchromatin by chromosome rearrangement ( ). PEV of 
heterochromatic genes, however, appears to be caused by increased distance from major 
heterochromatic blocks, rather than simple juxtaposition with euchromatin . Interestingly, 
modifiers of PEV (such as changing the dosage of total genomic heterochromatin, or  -acting 
genes) in general have opposite effects on PEV of euchromatic genes and PEV of heterochromatic 
genes  and chromosome transmission  ( ). Recent genetic studies have suggested 
that PEV of euchromatic genes is also influenced by nuclear position. Autosomal rearrangements 
that revert  PEV move this locus (the normally euchromatic  gene plus the 
adjacent insertion of a large block of heterochromatin) to the autosomal tips . Finally, PEV is 
enhanced by the removal of terminal sequences from a  minichromosome, even for 
terminal deficiency breakpoints up to 100 kb from the affected euchromatic gene .

[12•]

Drosophila

Drosophila
Fig. 1b

[60][61]
trans

[27] [62•] Fig. 1b

brown Dominant brown
[63•]

Drosophila
[64][65]

These examples are consistent with models involving 'looping' of affected regions into 
heterochromatic (centromeric and/or telomeric) nuclear domains formed by Rabl configuration 
clustering. Looping into the heterochromatic domain would repress euchromatic gene function , 
but would be essential for the function of heterochromatic genes ( ). Further investigations are 
required to test this hypothesis, such as cytological examination of the positions of ectopic 
heterochromatic genes in interphase nuclei  under variegating and non-variegating 
circumstances. It is worth noting that transformation experiments involving ribosomal genes 
demonstrate that their normal heterochromatic location is not required for RNA polymerase I 
transcription, nucleolus formation, or X–Y meiotic pairing , suggesting that these processes 
are not sensitive to either nuclear or chromosomal position.

[63•]
Fig. 2

[66]

[67][68]
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A nuclear positioning model for PEV. An interphase nucleus with heterochromatic domains formed by telomeric and 
centromeric clustering (Rabl configuration, see text). A representative chromosome is shown, with a heterochromatic gene 
indicated by a black box and a euchromatic gene indicated by an open box (see Fig. 1 for other symbols). A 
rearrangement of the chromosome is shown, with the resulting gene expression being determined by the position of the genes 
within the nucleus. (b) Looping into the euchromatic domain would be essential for the expression of the euchromatic gene, 
but would repress the expression of the heterochromatic gene . (c) Looping into the heterochromatic domain would be 
essential for the expression of the heterochromatic gene, but would repress euchromatic gene expression . Once located 
to the heterochromatic compartment, euchromatic genes could be inactivated by exclusion of transcriptional or replication 
machinery from the compartment, domain-induced changes in chromatin structure, or other types of modification (see text). 
In this model, the probability that a particular site would loop into a heterochromatic compartment would depend on the 
amount of heterochromatin at the site, the total amount of heterochromatin in the cell, and the distance between the site and 
the compartment.

Fig. 2. (a)

(b,c)

[60][61]
[63•]

Return to text reference [1]

Results from studies of yeast position effects have suggested that telomere associations with the 
nuclear membrane are an important component of silencing and may be responsible for observed 
changes in chromatin structure. RAP1 protein binds to telomeric repeats , is responsible for 
telomere–telomere and telomere- -nuclear membrane associations (reviewed in ) and is 
required for telomeric silencing . Furthermore, the SIR3 and SIR4 products are localized to 
the nuclear periphery, and mutations in either gene result in both loss of telomere–membrane 
associations and derepression of telomeric and  silencing . The recent discovery that  -
dependent and  -dependent silencing can be induced by C  A terminal repeats inserted 

up to 400 kb from the telomere argues for a critical role for the repeats, rather than telomere 
location  (JB Stavenhhagen, VA Zakian, personal communication). The possibility that internal 
repeats accomplish silencing by looping to the telomere/nuclear membrane compartment has been 
suggested by the  -dependence and the observation that C  A silencing is stronger at 

telomere–proximal locations. PEV associated with genes inserted at the  centromere 
requires a centromeric location, and not just central core sequences . Fission yeast centromeres 
are located at the nuclear periphery in interphase , but a functional link between the 
centromeric position effect and nuclear position has not been demonstrated. Perhaps the primary 
event in yeast silencing is localization to the nuclear membrane (dependent on  ,  /  ?), 
followed by directional propagation of (  ,  ,/  /  /  -mediated ?) 
chromatin changes. Proof that telomere,  or centromere associations with the membrane are 
sufficient for initiation will require the demonstration that returning genes to the periphery in 

 or  mutants restores silencing.

[69]
[59•]

[70][71•]

HM [72•] RAP1
SIR2,3,4 1–3

per se

RAP1 1–3
S. pombe

[48•]
[49]

SIR3 4 RAP1
SIR1 2 histone H4 ARD1 NAT1
HM

rap1, 
sir3 sir4

 Position-effect variegation and physical alterations of 
heterochromatic DNA

 

 DNA copy number reductions can be associated with position-
effect variegation
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The genetic and cytological characteristics of PEV are consistent with molecular mechanisms other 
than transcriptional inactivation via chromatin compaction and/or alterations in nuclear positioning. 
Physical modifications to the DNA, such as reduced gene copy number, could play a role in PEV, and 
provide an attractive explanation for the heritability of the repressed state through many cell 
divisions.

In dipteran polytene chromosomes, heterochromatic DNA copy number is reduced (under-
represented) 64–1000-fold, with respect to the euchromatin . Studies of the copy number of 
sequences in the  minichromosome  ( ) in polytene cells has provided strong 
support for the inclusion of adjacent euchromatin in heterochromatin-associated under-
representation . Although changes in euchromatic copy number were sufficient to account for 
phenotypic (  ) variegation ( ), an additional effect on transcription could not be ruled 
out .

[73]
Drosophila Dp1187 Fig. 3

[74]
yellow + Fig. 3

[74]

Structure and under-representation of the minichromosome . The 
molecular structure of the 1300 kb minichromosome . The thin line represents 
euchromatin, which contains genes normally present on the tip 
of the X, including the body-colour gene located at - 20 kb. 0 kb marks the euchromatin–
heterochromatin junction. The lightly tinted box represents the centric (  ) heterochromatin, and 
the black box indicates the position of an 'island of complex DNA', which is a block of middle-
repetitive and/or single copy sequences that is found between 
satellite-containing regions . Two other islands are present in
the heterochromatin (GH Karpen, unpublished data). The DNA copy number for 
different regions of the minichromosome, relative to the same region on the normal X (% 
representation), is shown for XO salivary gland polytene nuclei .

Fig. 3. Drosophila Dp1187 (a)
Dp1187

yellow +

[74][77•]
Dp1187 (b)

[74][77•]

Return to text reference [1] [2] [3] [4] [5] [6] [7]

The fact that some PEV rearrangements display euchromatic under-representation , whereas 
others do not , suggests that heterochromatin is functionally diverse and that multiple 
mechanisms are responsible for PEV. The under-representation of juxtaposed euchromatin probably 
depends on the usual representation of heterochromatic regions present at the junction. For 

example, rearrangements involving - heterochromatin ( ; reviewed in ) may not involve 

euchromatic under-representation, because at least some - heterochromatin is known to be fully 
represented in polytene nuclei . A striking example of the diversity of PEV mechanisms comes 
from a comparison of two different regions of the  minichromosome.
The strong inhibition of  gene expression displayed by P-element constructs inserted in the 
subtelomeric heterochromatin ( ) involves only minor under-representation and is most 
probably caused by transcriptional inactivation . The subtelomeric insertions are located in a 
region rich in middle-repetitive elements, which is only 220 kb from the extensively under-
represented  gene adjacent to centric heterochromatin. Determining the roles of nuclear 
position and chromatin compaction in this and other telomeric position effects 
in (see  for references) requires further investigation.

[74][76]
[14][77•]

Fig. 1 [75]

[78]
Dp1187

rosy +

Fig. 3
[77•]

yellow +

Drosophila [77•][79]

 Under-replication versus somatic elimination  
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What is the molecular mechanism responsible for heterochromatin- associated changes in DNA copy 
number? In  , early replication origins become utilized late in S phase when inserted 
near telomeres . Under-representation in  could arise during polytenization because 
replication of heterochromatin is inhibited  or delayed  (the 'under-replication' model), for 
example by packaging into a repressed chromatin structure, or inclusion in a nuclear compartment 
incompatible with normal replication. Alternatively, heterochromatic DNA may be physically 
removed during polytenization ('elimination'), and perhaps even in diploid somatic cells. DNA 
elimination has been documented in distantly related eukaryotic species (ciliates, nematodes, 
crustaceans, dipterans, and vertebrates), and frequently involves heterochromatin and polytenization 
(reviewed in ).

S. cerevisiae
[80•] Drosophila

[81] [82•]

[83][84••][85]

Recent experiments utilizing the  minichromosome have suggested that elimination, rather 
than under-replication, is responsible for heterochromatic under-representation. DNA from a region 
of  displaying a gradient of under-representation in salivary gland nuclei (near 0 kb in ) 
was analyzed by two- dimensional electrophoresis . Stalled replication forks, predicted by the 
under-replication model to be present in 33% of the molecules, were not found. Positive evidence 
for qualitative changes in chromosome structure associated with heterochromatin comes from recent 
pulsed-field analyses. Severely shortened chromosomes that lack the satellite DNAs normally 
present in  ( ) appear in polytenized tissues and are likely to retain only 
euchromatin ( ; GH Karpen, AC Spradling, unpublished data).

Dp1187

Dp1187 Fig. 3
[86•]

Dp1187 Fig. 3 Dp1187
[87•]

Transposon-like elements (e.g. Tecs) are removed during macronuclear polytenization in 
and . Perhaps transposon-like sequences in the 'islands 
of complex DNA' ( ) are responsible for under-representation in  . However, the 
elucidation of the exact mechanism of under-representation requires further experimentation, 
including in-depth structural analysis of developmentally altered molecules. The detailed restriction 
map of heterochromatin ( ) and the isolation of a large number of minichromosome 
deletion derivatives (GH Karpen, unpublished data) will help in the testing of models by mapping 
sequences responsible for PEV and under-representation. Although exact mechanisms are not 
currently understood, the functional ramifications of heterochromatin undergoing developmentally 
regulated covalent changes in multicellular eukaryotes are numerous , and warrant 
further exploration.

Euplotes
Oxytricha [84••][88]

Fig. 3 Drosophila

Dp1187 Fig. 3
cis

[4][85][87•]

 Conclusions and future prospects  

The past year has seen renewed interest in PEV, yielding new information about PEV mechanisms 
and components, and producing manipulatable systems that hold promise for increasing our 
understanding in the immediate future. Major advances have come from detailed molecular-genetic 
analyses of telomeric and centromeric position effects and mating-type locus
silencing in the yeasts  and  . Further investigations should begin to elucidate 
the complex interaction between DNA replication and the establishment or maintenance of the 
silenced state, reveal chromatin structure and protein-component changes associated with position 
effects, and yield insight into the role of telomere associations with the nuclear envelope.

S. cerevisiae S. pombe

However, heterochromatin in multicellular eukaryotes, such as  and humans, is 
structurally and functionally more complex than that found in yeasts. It is encouraging that 
'simplified' systems have been developed in recent years that allow heterochromatin and PEV to be 
studied with the specificity and directness necessary for progress. For example, correlating functions 
with the molecular structure of heterochromatin (e.g.  ) will help in the elucidation of the 
nature of the  sequences responsible for inducing PEV and the responsiveness of the variegating 
domains. From studies of  and  variegation, and readily clonable modifier loci, we look 
forward to direct analyses of chromatin changes in affected tissues, molecular-cytological proof of 
the importance of nuclear positioning, and extensive analysis of the molecular and biochemical 
functions of modifier loci.

Drosophila

Dp1187
cis

brown light

It is important to emphasize that direct proof of a primary role for chromatin assembly, the most 
widely accepted model for heterochromatin-induced PEV, is lacking in multicellular eukaryotes. 
Recent data, reviewed here, suggest that multiple mechanisms are responsible for the group of 
phenomena we call PEV, reflecting the structural and functional diversity of heterochromatin. It is 
likely that a number of the  and  loci encode products that directly (e.g. DNA-binding 
proteins or packaging components, such as histones) or indirectly (e.g. regulatory phosphatases and 
kinases) influence chromatin structure. Investigators need to be more cautious, however, in 
assigning chromatin assembly or maintenance functions  to genes whose mutant products 
modify the phenotypes associated with PEV rearrangements. We cannot be blind to the exciting 
possibility that modifiers of PEV may function to regulate heterochromatic DNA elimination or 
inheritance functions, encode boundary functions that separate higher-order chromosome domains, 
regulate the position of domains within the nucleus, or control (as yet) undiscovered mechanisms 
responsible for the behavior and function of the mysterious entity known as heterochromatin.

Su(var) E(var)

ad hoc
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